Question276406: Given that P(A or B) = 1/3, P(A) = 1/6, and P(A and B) = 1/8, find P(B). 7/24 is the answer but I would really love to know why. This question is worded in a very confusing manner. Found 2 solutions by stanbon, edjones: PNumbers. Base Metal (Typical or Example) 1. Carbon Manganese Steels (four Group Numbers) 2. Not Used. 3. Half Molybdenum or half Chromium, half Molybdenum (three Group Numbers) Vanadium (five Group Numbers) 6. Martensitic Stainless Steels (Grade 410, 415, 429) (six Group Numbers) 7. Ferritic Stainless Steels (Grade 409, 430) 8. Austenitic Maybeit's better to it turn around and talk about a probability of 0.85 (= 1 - p/2), or odds of 6 to 1, that the true effect is positive. Here's another example: you observed an increase in performance of 2.6%, and the p value was 0.04, so the probability that performance really did increase is 0.98, or 49 to 1. Acubic polynomial f (x) = a x 3 + b x 2 + c x + d has a graph which is tangent to the x - axis at 2 has another x-intercept at -1 and has y-intercept at -2 as shown The values of a+b+c+d equals Medium SOLUTION Let P(E)=0.25 and P(F)=0.45 1. Find P(E and F) if P(E or F)=0.6 2. Find P(E and F) if E and F are mutually exclusive. 3. Find P(Fc) Algebra -> Probability-and-statistics-> SOLUTION: Let P(E)=0.25 and P(F)=0.45 1. Find P(E and F) if P(E or F)=0.6 2. 3. Find P(Fc) P(F') = 1-0.45 = 0.55 ===== Cheers, Stan H. ShUEVy. Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is . Dado um polinômio px, temos que seu valor numérico é tal que x = a é um valor que se obtém substituindo x por a, onde a pertence ao conjunto dos números reais. Dessa forma, concluímos que o valor numérico de pa corresponde a px onde x = a. Por exemplo, dado o polinômio px = 4x² – 9x temos que seu valor numérico para x = 2 é calculado da seguinte maneira px = 4x² – 9x p2 = 4 * 2² – 9 * 2 p2 = 4 * 4 – 18 p2 = 16 – 18 p2 = –2 Se, ao calcularmos o valor numérico de um polinômio determinarmos pa = 0, temos que esse número dado por a corresponde à raiz do polinômio px. Observe o polinômio px = x² – 6x + 8 quando aplicamos p2 = 0. p2 = 2² – 6 * 2 + 8 p2 = 4 – 12 + 8 p2 = 12 – 12 p2 = 0 Dessa forma, percebemos que o número 2 é raiz do polinômio px = x² – 6x + 8, pois temos que p2 = 0. Exemplo 1 Dado o polinômio px = 4x³ – 9x² + 8x – 10, determine o valor numérico de p3. p3 = 4 * 3³ – 9 * 3² + 8 * 3 – 10 p3 = 4 * 27 – 9 * 9 + 24 – 10 p3 = 108 – 81 + 24 – 10 p3 = 41 O valor de px = 4x³ – 9x² + 8x – 10 para p3 é 41. Exemplo 2 Determine o valor numérico de px = 5x4 – 2x³ + 3x² + 10x – 6, para x = 2. p2 = 5 * 24 – 2 * 23 + 3 * 22 + 10 * 2 – 6 p2 = 5 * 16 – 2 * 8 + 3 * 4 + 20 – 6 p2 = 80 – 16 + 12 + 20 – 6 p2 = 90 De acordo com o polinômio fornecido temos que p2 = pare agora... Tem mais depois da publicidade ; Move all terms containing to the left side of the from both sides of the write as a fraction with a common denominator, multiply by .Step write as a fraction with a common denominator, multiply by .Step each expression with a common denominator of , by multiplying each by an appropriate factor of .Step the numerators over the common

p 2 p 3 1 p 6